Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis.
نویسندگان
چکیده
The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys⁴³⁰, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys⁴³⁰. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys²⁰⁶, was identified. Furthermore, the active-site Cys⁴³⁰ was found to be located on top of a loop structure, formed by the two flanking residues Cys⁴²⁸ and Cys⁴³⁵, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys⁴²⁸ and Cys⁴³⁵ are within disulfide bond distance and that a persulfide transfer from Cys⁴³⁰ to Cys²⁰⁶ is indeed possible.
منابع مشابه
The functions of NifS-like proteins in plant sulfur and selenium metabolism
NifS-like proteins were originally studied in bacteria, where they play an important role in sulfur (S) and selenium (Se) metabolism. NifS-like proteins, now thought to exist in all organisms, are best known for their cysteine desulfurase activity that catalyzes the conversion of cysteine into alanine and elemental S needed for various cofactors: iron–sulfur clusters, thiamine, biotin and molyb...
متن کاملCrystal structure of the cystine C-S lyase from Synechocystis: stabilization of cysteine persulfide for FeS cluster biosynthesis.
FeS clusters are versatile cofactors of a variety of proteins, but the mechanisms of their biosynthesis are still unknown. The cystine C-S lyase from Synechocystis has been identified as a participant in ferredoxin FeS cluster formation. Herein, we report on the crystal structure of the lyase and of a complex with the reaction products of cystine cleavage at 1.8- and 1.55-A resolution, respecti...
متن کاملIdentification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria.
Classical xanthinuria type II is an autosomal recessive disorder characterized by deficiency of xanthine dehydrogenase and aldehyde oxidase activities due to lack of a common sulfido-olybdenum cofactor (MoCo). Two mutations, both in the N-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS), were reported in patients with type II xanthinuria. Whereas the N-terminal domain of HMCS w...
متن کاملCatalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.
Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues th...
متن کاملThe identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin.
Alpha toxin (AT) is a pore-forming toxin produced by Clostridium septicum that belongs to the unique aerolysin-like family of pore-forming toxins. The location and structure of the transmembrane domains of these toxins have remained elusive. Using deletion mutagenesis, cysteine-scanning mutagenesis and multiple spectrofluorimetric methods a membrane-spanning amphipathic beta-hairpin of AT has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 441 3 شماره
صفحات -
تاریخ انتشار 2012